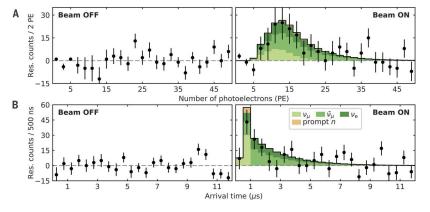
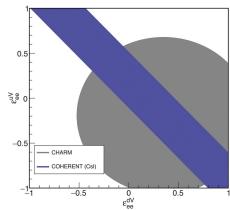


Daniel J. Salvat

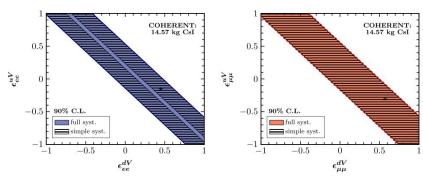
The COHERENT physics program

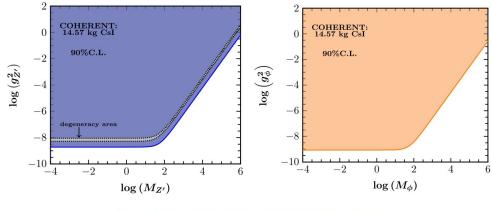

Non-standard interactions


CEvNS, the SM, and beyond

$$\frac{d\sigma}{dT_{coh}} = \frac{G_f^2 M}{2\pi} G_V^2 \left[1 + \left(1 - \frac{T}{E_\nu} \right)^2 - \frac{MT}{E_\nu^2} \right]$$

$$G_V = ((g_V^p + 2\epsilon_{ee}^{uV} + \epsilon_{ee}^{dV}) Z + (g_V^n + \epsilon_{ee}^{uV} + 2\epsilon_{ee}^{dV}) N) F_{\text{nucl}}^V(Q^2)$$

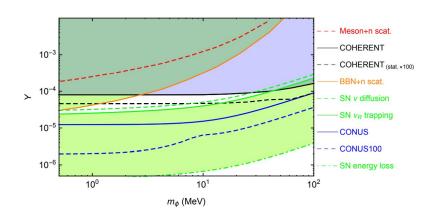

What have we learned?



CEvNS, the SM, and beyond

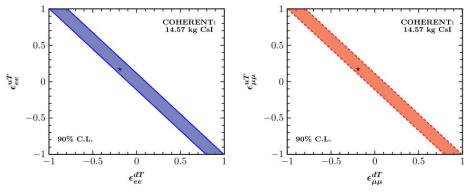
- New constraints on
 - Z' (for left-handed neutrinos)
 - scalar mediator
 - flavor-diagonal NSI

PHYSICAL REVIEW D 97, 033003 (2018)


COHERENT constraints to conventional and exotic neutrino physics

D. K. Papoulias* and T. S. Kosmas†

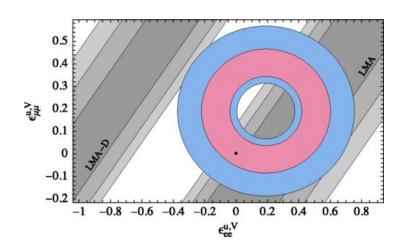
Theoretical Physics Section, University of Ioannina, GR-45110 Ioannina, Greece



Scalar and tensor currents

Yasaman Farzan,^a Manfred Lindner,^b Werner Rodejohann^b and Xun-Jie Xu^b

PHYSICAL REVIEW D 97, 033003 (2018)

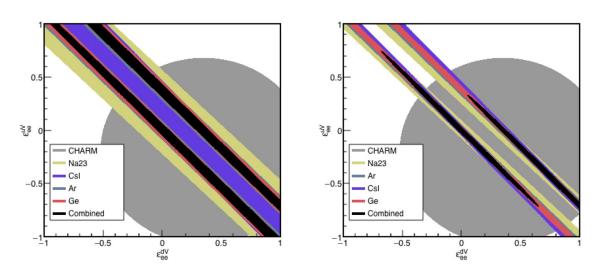

COHERENT constraints to conventional and exotic neutrino physics

D. K. Papoulias* and T. S. Kosmas†

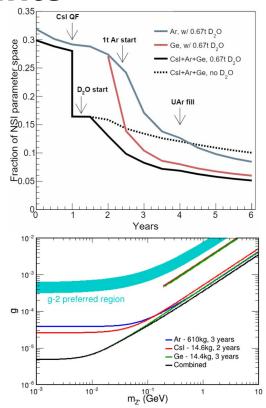
Theoretical Physics Section, University of Ioannina, GR-45110 Ioannina, Greece

The LMA-D solution

CEvNS compliments oscillation data to break LMA-D degeneracy


PHYSICAL REVIEW D 96, 115007 (2017)

COHERENT enlightenment of the neutrino dark side


Pilar Coloma, 1,* M. C. Gonzalez-Garcia, 2,3,4,† Michele Maltoni, 5,‡ and Thomas Schwetz^{6,§}

Future COHERENT NSI constraints

- Multiple targets with different *N/Z* eliminates more parameter space
- Considering sensitivity studies that incorporate recoil spectra
- Degeneracy in Z' models broken by using multiple nuclear targets

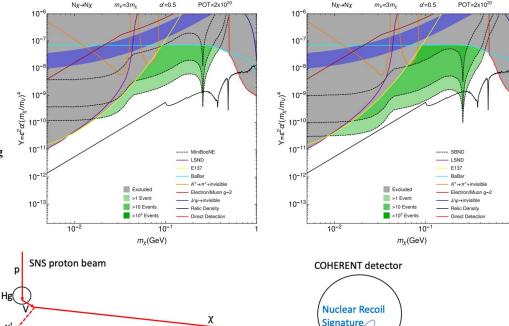
Future COHERENT NSI constraints

- Csl result already strengthens limits on vector-like NSI
- Sensitivity studies underway for modulation of recoil spectra
- Future measurements will constrain π -DAR ν flux

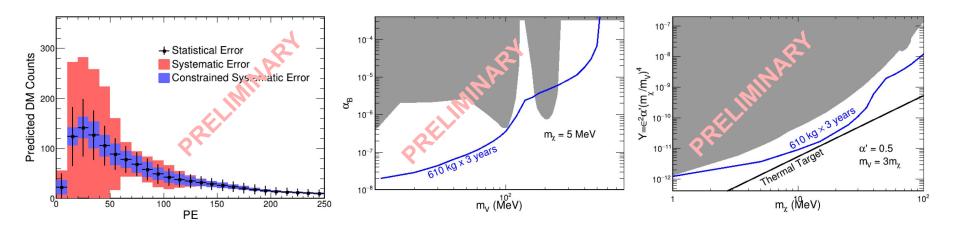
Accelerator-produced dark matter

Vector portal dark matter

$$\mathcal{L} = \mathcal{L}_{\chi} - \frac{1}{4} V_{\mu\nu} V^{\mu\nu} + \frac{1}{2} m_V^2 V_{\mu} V^{\mu} - \frac{\epsilon}{2} V^{\mu\nu} F_{\mu\nu} + q_B g' V_{\mu} J_B^{\mu} + \cdots$$


PHYSICAL REVIEW D 95, 035006 (2017)

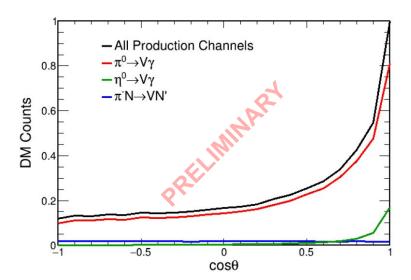
Light dark matter in neutrino beams: Production modeling and scattering signatures at MiniBooNE, T2K, and SHiP

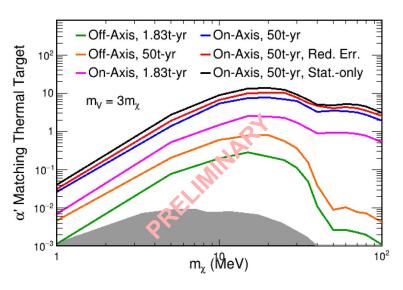

Patrick deNiverville, ¹ Chien-Yi Chen, ^{1,2} Maxim Pospelov, ^{1,2} and Adam Ritz¹

Existing limits from accelerators

but elastic n.r. offers coherent enhancement!

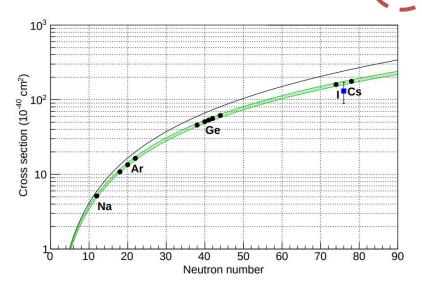
A DM search with COHERENT data




- Coherent cross section enhancement
- DM and CEvNS recoil spectra are different -- delayed CEvNS provide constraint for prompt DM
- Competitive constraints for ~10-30 MeV vector portal in neutrino alley
- Strong limits on baryonic portal

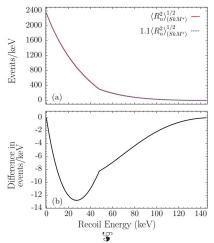
STS prospects

- Preliminary results indicate that a ~10 ton scale detector is feasible
- On axis with beam produces largest boosted pion flux
- Can rule out all couplings for $m_\chi > 4$ MeV assuming $m_V = 3m_\chi$ Mitigating fast-n backgrounds key for leveraging the full power of the pulsed π -DAR source



Nuclear form factors

Nuclear targets for COHERENT


$$G_{V} = (g_{V}^{p} Z + g_{V}^{n} N) F_{\text{nucl}}^{V}(Q^{2})$$

$$G_{A} = (g_{A}^{p} (Z_{+} - Z_{-}) + g_{A}^{n} (N_{+} - N_{-})) F_{\text{nucl}}^{A}(Q^{2})$$

$$F_{n}(Q^{2}) \approx \frac{1}{N} \int \rho_{n}(r) \left(1 - \frac{Q^{2}}{3!} r^{2} + \frac{Q^{4}}{5!} r^{4} - \frac{Q^{6}}{7!} r^{6} + \cdots \right) r^{2} dr$$

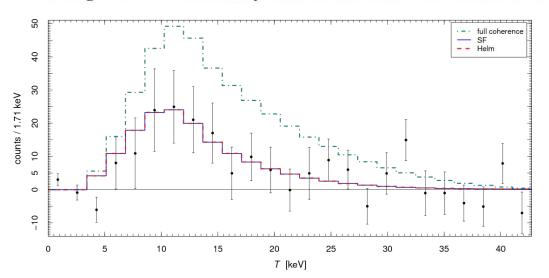
$$\approx \left(1 - \frac{Q^{2}}{3!} \langle R_{n}^{2} \rangle + \frac{Q^{4}}{5!} \langle R_{n}^{4} \rangle - \frac{Q^{6}}{7!} \langle R_{n}^{6} \rangle + \cdots \right), \quad (6)$$

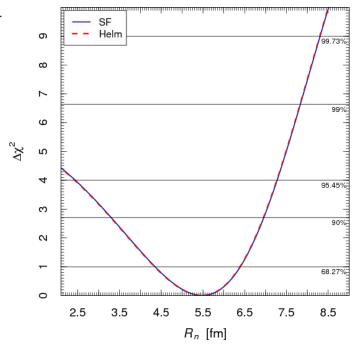
Neutrino-nucleus coherent scattering as a probe of neutron density distributions

Kelly Patton, ^{1,*} Jonathan Engel, ^{2,†} Gail C. McLaughlin, ^{1,‡} and Nicolas Schunck^{3,§}

¹Physics Department, North Carolina State University, Raleigh, North Carolina 27695, USA

²Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599, USA

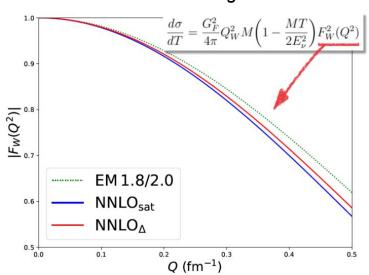

³Physics Division, Lawrence Livermore Laboratory, Livermore, California 94551, USA



The Cs & I neutron density distribution

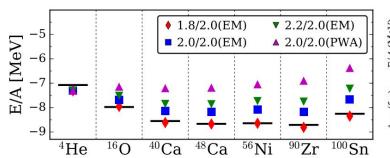
PHYSICAL REVIEW LETTERS 120, 072501 (2018)

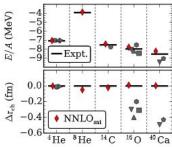
Average CsI Neutron Density Distribution from COHERENT Data



Advances in chiral EFT

from G. Hagen

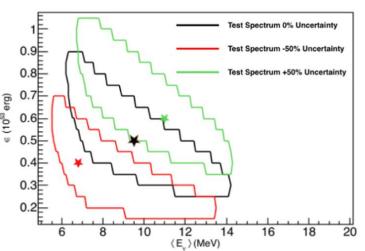

Structure of the lightest tin isotopes


T. D. Morris,^{1,2} J. Simonis,^{3,4} S. R. Stroberg,^{5,6} C. Stumpf,³ G. Hagen,^{2,1} J. D. Holt,⁵ G. R. Jansen,^{7,2} T. Papenbrock,^{1,2} R. Roth,³ and A. Schwenk^{3,4,8}

PHYSICAL REVIEW C 91, 051301(R) (2015)

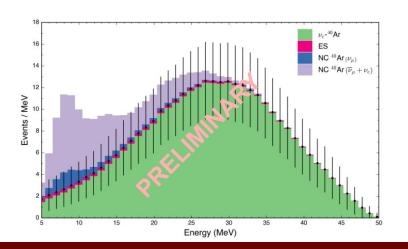
Accurate nuclear radii and binding energies from a chiral interaction

A. Ekström, ^{1,2} G. R. Jansen, ^{2,1} K. A. Wendt, ^{1,2} G. Hagen, ^{2,1} T. Papenbrock, ^{1,2} B. D. Carlsson, ³ C. Forssén, ^{3,1,2} M. Hjorth-Jensen, ^{4,5} P. Navrátil, ⁶ and W. Nazarewicz^{4,2,7}


Outlook

- CEvNS measures weak form factors, complementing PV elastic scattering
- Working to investigate sensitivities for the broad range of potential nuclei for future high precision measurements

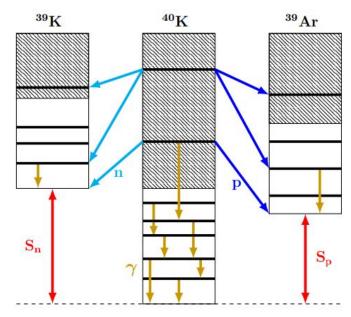
CC/NC inelastic scattering


Inelastic interactions in LAr

from E Conley & K Scholberg

$$v_e + {}^{40}\text{Ar} \rightarrow e^- + {}^{40}\text{K}^*$$

- Predominant reaction expected for DUNE supernova signature
- Future COHERENT LAr detector can inform cross section, event topologies



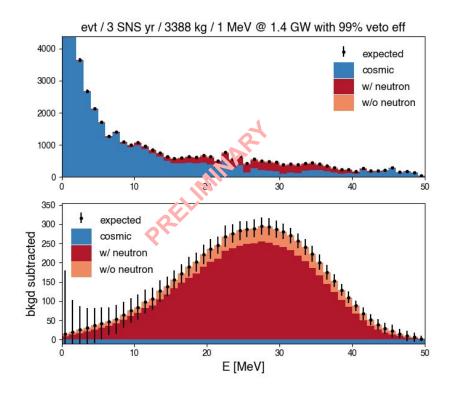
MARLEY sims for next-gen LAr detector

- Model of Argon Reaction Low-Energy Yields
- Comprehensive event generator incorporating optical model for resulting compound nucleus, nuclear level densities...
- Deploying for studies of π -DAR $v_{\rm e}$ for next-gen LAr

See S. Gardiner's talk!

The ¹²⁷I charged-current cross section

Exclusive reaction measured in radiochemical measurement

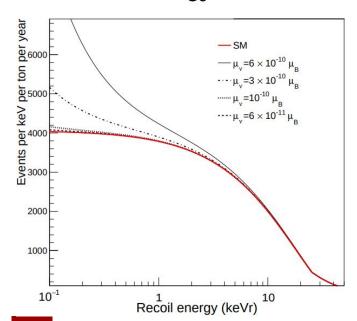

$$v_e + {}^{127}I \rightarrow e^- + {}^{127}Xe^*$$

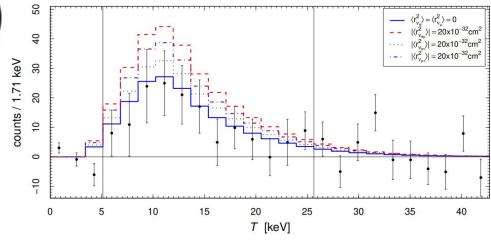
- Test of nuclear models/g_A quenching
- Accessible in COHERENT Nal detector arrays

					1380 [Shell] (Hayes and S, 2000) 1115 [Green's Function] (Meucci <i>et al.</i> , 2004)
	$^{12}C(\nu_{\mu},\mu^{-})^{12}N_{g.s.}$	Decay in Flight	LSND	$56 \pm 8 (\mathrm{stat}) \pm 10 (\mathrm{sys})$	68-73 [CRPA] (Kolbe <i>et al.</i> , 1999b) 56 [Shell] (Hayes and S, 2000)
⁵⁶ Fe	$^{56}\text{Fe}(\nu_e, e^-)^{56}\text{Co}$	Stopped π/μ	KARMEN	$256 \pm 108({\rm stat}) \pm 43({\rm sys})$	264 [Shell] (Kolbe et al., 1999a)
⁷¹ Ga	$^{71}{ m Ga}(\nu_e, e^-)^{71}{ m Ge}$	F 4		$0.0054 \pm 0.0009(tot)$ $0.0055 \pm 0.0007(tot)$ $0.0055 \pm 0.0006(tot)$	0.0058 [Shell] (Haxton, 1998) 0.0070 [Shell] (Bahcall, 1997)
¹²⁷ I	$^{127}I(\nu_e, e^-)^{127}Xe$	Stopped π/μ	LSND	$284 \pm 91(\mathrm{stat}) \pm 25(\mathrm{sys})$	210-310 [Quasi-particle] (Engel et al., 1994)

Adapting the MARLEY framework

- Incorporating calculations and charge-exchange measurements of B(GT) for ¹²⁷I into MARLEY
- Use preliminary Nal data to assess backgrounds
- Nal array highly segmented -studying potentially complex event topologies to optimize S/B and potentially study final states



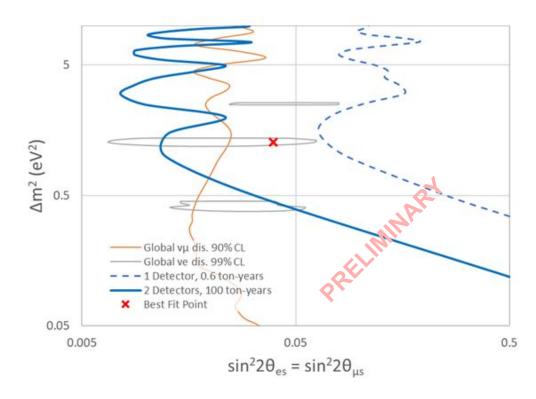


Neutrino properties

Electromagnetic properties

$$\left(\frac{d\sigma}{dT}\right)_{\rm m} = \frac{\pi\alpha^2\mu_{\nu}^2Z^2}{m_e^2} \left(\frac{1 - T/E_{\nu}}{T} + \frac{T}{4E_{\nu}^2}\right)$$

$$(|\langle r_{\nu_{e\mu}}^2 \rangle|, |\langle r_{\nu_{e\tau}}^2 \rangle|, |\langle r_{\nu_{\mu\tau}}^2 \rangle|) < (22, 38, 27) \times 10^{-32} \,\mathrm{cm}^2$$


Neutrino Charge Radii from COHERENT Elastic Neutrino-Nucleus Scattering

M. Cadeddu, 1,* C. Giunti, 2,† K.A. Kouzakov, 3,‡ Y.F. Li, 4,5,§ A.I. Studenikin, 6,7,¶ and Y.Y. Zhang 4,5,**

Sterile neutrino oscillations

- Potential for flavor-blind disappearance measurement
- A future large-scale, dedicated measurement at STS would be needed to improve bounds

Outlook

The COHERENT physics program

- Already several applications of our CsI data for NSI, neutron distributions
- Multiple nuclear targets at one source mitigates some systematic uncertainties, breaks degeneracies in NSI and Z' models
- Ongoing efforts to refine QF and understanding of recoil spectra
 - Many aspects of physics program will benefit from precision measurements of recoil spectra
- An on-axis, large scale detector could provide optimal sensitivity to accelerator-produced DM

